MaineGeneral Cancer Care
2019 Annual Report

Celebrating
12 Years
of Hope
Cancer Care Committee

Monica Beaulieu
Quality Improvement Coordinator, Quality, Care Management & Safety

Juanita Begin
Clinical RN, Navigator

Cathy Bourque
Administrative Director of Rehabilitation Services

Deb Bowden, RN, MSN
Cancer Program Administrator

Nicole Brown
Point-of-Entry RN, Navigator

Patty Brown
RN Research Coordinator

Anne Conners
Prevention and Screening

Ginna Dix
Medical Oncology Advance Practitioner Provider

Rabun Dodge
2 West, Inpatient Oncology Supervisor

Dr. Robert Dohner
Medical Director of Palliative Care

Rev. Joe Dressler
Spiritual Care and Patient Family Council Representative

Chesley Flotten, LCSW
Manager of Oncology Psychosocial Services

Carolyn Hall
CTR Lead Cancer Registry

Dr. Glenn A. Healey
Cancer Conference Coordinator

Nicole Heanssler
American Cancer Society Representative

Dr. Byung Kim
Medical Oncologist

Dawn King
2 West, Inpatient Oncology Nurse Manager

Dr. Chris Mahoney
Diagnostic Radiologist

Andrea Martelle
Point-of-Entry RN, Navigator

Kerri Medeiros
Point-of-Entry RN, Navigator

Dr. Laura Nelsen
Pathologist

Sandra Neptune
RN Research Coordinator

Dr. Anita Praba-Egge
Cancer Liaison Physician, General Surgeon

Terrie Priest
RN, Oncology Clinician

Kim Smith
Nurse Manager, Medical Oncology

Lauren Spencer
Medical Oncology Treatment RN

Donna Walsh, MS, RD, LD
Community Outreach Coordinator

Barbara Wiggin
Manager, Radiation Oncology, Oncology Analytics

Contents

Message to Our Community .. 3

Accountability and Quality Improvement .. 4

Psychosocial Oncology and Supportive Services Program ... 6

Advanced Care Through Partnerships .. 7

Superior Workforce ... 10

Community Outreach .. 11

Advanced Technology Closest to Home ... 14

Growth/Expansion of Space .. 16

MaineGeneral Cancer Registry Report .. 19
Message to Our Community

It is with much gratitude that I invite you to explore the pages of this annual report which reflect the dedication and skillful hands and hearts of the staff found within the walls of the Harold Alfond Center for Cancer Care (HACCC) of MaineGeneral. Each member executes their care based on best practice and with the desire to serve their community as if they were serving one of their own family members.

I can attest to this superb level of care, as my own family sought and received cancer care this past year at the HACCC. Witnessing firsthand the impact and outcomes of initiatives established by the Cancer Committee and other members of the team was rewarding to say the least. The team in unity provided patient-family-centered care throughout the varied courses of care. As the administrative director of Oncology Services, I had the insight to know this level of care was orchestrated by an extremely talented and dedicated group, our Cancer Committee. In recognition of their unwavering commitment to never settling for the status quo, I dedicate this annual report to the members of the MaineGeneral/HACCC Cancer Committee. For the readers of this report, please allow me to share with you who this special group entails and their purpose.

The Cancer Committee is a group of multispecialty physicians, administrative, quality assurance, nursing and support staff who coordinate the activities of the Commission on Cancer. Charged with providing leadership, they assess, plan, coordinate and initiate activities to address the cancer-related needs at hand. Through ongoing monitoring and assessment, the Committee advocates for and assures quality services are available to meet the spectrum of needs. This may be done through the coordination of studies, community education, screening programs and process improvements.

I encourage you to peruse this report, knowing the data, studies and the outcomes represent loved ones that our team cares deeply for. It is with this level of commitment that the members of the Cancer Committee and the HACCC staff vow to continue to serve.

Debbie Bowden
Administrative Director and family member served by the HACCC staff in 2019
Accountability and Quality Improvement

The Harold Alfond Center for Cancer Care is a facility accredited by the Commission on Cancer. The Commission on Cancer (CoC) is a consortium of professional organizations dedicated to improving survival and quality of life for cancer patients through standard-setting, prevention, research, education and the monitoring of comprehensive quality care.

As part of accreditation, the HACCC meets high standards of quality that are benchmarked and compared locally and nationally. The data for these benchmarks come through our Cancer Registry Program and help us ensure we are offering the best care right here in the Kennebec Valley.

The Commission on Cancer has quality standards for cancer care of Bladder, Breast, Cervix, Colon, Endometrium, Gastric, Kidney, Lung, Ovary and Rectum. There are focuses in what is termed their Rapid Quality reporting system. Colon and Breast Cancer are the current focuses. Below are our results.

The graph above highlights our high-quality care for colon cancer patients. The dark blue and green represent MaineGeneral’s data benchmarked to all other CoC-accredited facilities.

The two quality measures are:

- Blue: At least 12 regional lymph nodes are removed and pathologically examined for resected colon cancer.
- Green: Adjuvant chemotherapy is recommended and administered within four months of diagnosis for patients under the age of 80 with AJCC stage III colon cancer.
Equally impressive are the quality metrics for our breast care patients.

- Red: Radiation is administered within one year of diagnosis for women under the age of 70 receiving breast conservation surgery for breast cancer.
- Yellow: Tomoxifen or third generation aromatase inhibitor is recommended or administered within one year of diagnosis for women with AJCCC T1c or stage IB or III hormone receptor positive breast cancer.
- Pink: Combination chemotherapy is recommended or administered within four months of diagnosis for women under 70 with AJCC T1cN0, or stage IB – III hormone receptor negative breast cancer.
- Black: Radiation therapy is recommended or administered following any mastectomy within one year of diagnosis of breast cancer for women with four positive regional lymph nodes.

We are also able to benchmark and compare ourselves to the other CoC-accredited cancer centers in Maine. These centers include Maine Medical Center, Northern Light Health and Central Maine Medical Center.

We’re very excited to be offering some of the highest quality care both in the state and nationally.
Psychosocial Oncology and Supportive Services Program

What is Psychosocial Oncology? Anyone touched by cancer knows it doesn’t happen in a vacuum; it happens in a life — it happens to a mother, father, child, sister, brother, partner, loved one. It suddenly changes how you think, feel, whether you can work, play, eat, sleep or pay your bills.

Psychosocial Oncology is dedicated to addressing the many emotional, psychological, spiritual, social and financial ways in which cancer impacts our patients, families and community. In 2019, the HACCC developed a comprehensive Psychosocial Oncology and Supportive Services program to better integrate the support available to patients and family throughout the continuum of care.

The Psychosocial Oncology and Supportive services team includes three full-time clinical social workers, two full-time financial counselors, a part-time chaplain, an on-site American Cancer Society Patient Navigator, and a full-time registered dietitian, who is a certified specialist in oncology nutrition care. The team collaborates closely with the full multidisciplinary medical team to identify and meet patient needs.

In 2019, the Psychosocial Oncology and Supportive Services team have provided the following clinical and non-clinical services to our patients and community.

Our team of LCSWs, Chesley Flotten, Ruth Coffey, and Christine Currie, provide direct clinical care through:

- Psychosocial assessment, treatment planning, and appropriate intervention and referrals
- Counseling for patients, couples, families and caregivers, throughout the cancer journey from diagnosis, through treatment, survivorship, and end of life
- Crisis intervention and safety planning, including collaboration with community-based mental health providers
- Advance care planning
- Facilitation of patient support groups

From 1/1/19 to 10/31/19, 20 meetings of the general support group for patients and caregivers were held at HACCC with an average attendance of five people per meeting. Additionally, a group for patients with metastatic disease was held five times.

Our financial counselors, Linda Taylor, known as “Red,” and Suzanne Houle, meet with patients and families for assistance with obtaining insurance, applying for financial programs — both state and federal such as MaineCare — and assistance in applying for aid in defraying additional costs of treatment such as gas, food and dental care. In FY2019, Red and Suzanne met with approximately 265 patients; of those, 213 benefitted from the Alfond Fund for a total distribution of $92,455 for food, gas and dental care.

Reverend Joe Dressler is our dedicated per-diem chaplain. He is available to offer spiritual support and counseling for patients and families, as well as consultation with the multidisciplinary team on spiritual care. From 1/1/19 to 10/31/19, Joe made 526 visits to 303 different patients.

Through a partnership with the American Cancer Society, we have Katie Bourque-Davidson, ACS Patient Navigator, who meets with patients and families to provide information on cancer-related resources for patients and caregivers, transportation assistance and connection to community-based resources.

Katie has been a member of the HACCC family since joining us as a medical assistant in 2017. In May 2019 we were thrilled that she accepted the position of ACS Navigator. Since then, she has provided services to 73 new patients and assisted an existing 208 patients enrolled with ACS services.

Donna Walsh, our registered dietitian, is an oncology-certified nutrition specialist who provides consultation and counseling related to: nutrition build-up before and during therapy; management of treatment symptoms; management of specialized nutrition such as tube feeding; and nutrition choices to reduce risk of recurrence. In addition to providing complementary nutrition consultation and counseling services for oncology patients, Donna also provides oncology nutrition-related classes for patients and the community.
Advanced Care Through Partnerships

Jackson Laboratory

During the year, with enthusiastic support across the Maine Cancer Genomics Initiative (MCGI) network, the MCGI study made significant progress in helping oncology patients and their clinicians access and use genomic testing for their patients. Of special note is the collaboration with the MaineHealth Cancer Care Network (MHCCN), MaineGeneral Medical Center and our friends at the HACCC. MHCCN contributed more than 600 patients to the MCGI — enrolling more than 300 patients to the study in 2019. MaineGeneral had the special privilege of enrolling the 1000th patient on the MCGI study protocol.

By the end of 2019, almost 1,200 patients were enrolled in the MCGI Study. All Maine oncology practices were successfully transitioned to using the newly launched JAX ActionSeq 2.0 Plus test in the Study. This version of the test offers additional information to clinicians including TMB, MSI and PD-L1 as well as NCI-MATCH™ designation. The MATCH™ connection helps clinicians put their patients on a relevant arm of the MATCH trial at practices where it is open, increasing meaningful outcomes for MCGI study participants. Approximately 10 patients from MHCCN were identified for the MATCH study in 2019.

The Jackson Laboratory continues to focus MCGI team efforts to bring treatment options to Maine oncology patients. These efforts center on collaborating with a number of notable partners to design and/or implement additional studies in 2020 that benefit Maine oncology providers and, ultimately, their patients. Preparations have begun for the fourth annual 2020 MCGI Forum, April 3-4, 2020 to showcase the progress and impact of the program in Maine. The Forum will again highlight the latest developments in precision medicine with a speaker list drawn from national key opinion leaders and experts within The Jackson Laboratory. For more information about MCGI, please visit our website at jax.org/mcgi or reach out to us at m/cgi@jax.org.

American Cancer Society

The American Cancer Society’s (ACS) mission is to save lives, celebrate lives and lead the fight for a world without cancer. The ACS and the HACCC have a long-standing collaborative partnership to help decrease the burden of cancer for patients, survivors and caregivers in Maine. Collaborative efforts range from prevention and early detective initiatives through the entire continuum of cancer care. Through our community and health system partnerships we aim to increase access to care for cancer patients with an emphasis on transportation, lodging and patient navigation, as well as expand our cancer control initiatives such as colorectal cancer screening and HPV vaccination.

The HACCC is one of two hospitals in Maine with a dedicated ACS Patient Navigator on site. Katie Bourque-Davidson is the ACS Patient Navigator in Augusta and is a member of the HACCC Supportive Services team. Before joining ACS in the navigator role, Katie was an employee at MaineGeneral Medical Center and earned certification in clinical medical assisting through MaineGeneral’s Medical Assisting Scholarship March 2017. Since her certification she has worked in a clinical medical assisting role in Medical Oncology at the HACCC.

In her role as ACS patient navigator, Katie can help with accessing services, applications and paperwork. She can also help identify barriers and coordinate resources so patients and families get the care and support they need. Here are some examples of things she may be able to help cancer patients with: foundation assistance; lodging when traveling for cancer care; ACS wig program and other related accessories; connecting with proper community supports; and transportation. ACS and the HACCC hope you find this to be a useful and empowering resource. You can reach Katie directly at 207-621-9424 if you have any questions or needs. You may also reach out to the ACS 24 hours a day, seven days a week at 1-800-227-2345 or online at cancer.org.
MaineHealth Cancer Care Network

The MaineHealth Cancer Care Network (MHCCN) began in 2017 and is living up to the promise of delivering comprehensive, patient-centered care for patients in Maine no matter where they live.

MaineGeneral Medical Center has been a partner since the launch of the collaborative network, which was made possible through a $10 million grant from The Harold Alfond® Foundation.

The Harold Alfond Center for Cancer Care (HACCC) has been able to leverage this partnership this year through expanded clinical trials.

We also have access through the network software solutions including the ClinicalPath initiative to enhance documentation and standardize the approach to care delivery across the cancer care network.

Finally, our own medical staff have been noted as leaders in their field through marketing and promotion of the network. Thoracic surgeon Seth Blank, MD, and Kerri Medeiros, RN, oncology nurse navigator, filmed a video about the importance of lung cancer screening using a testimonial of one of Dr. Blank’s patients. The full video can be accessed from the MaineGeneral website at www.mainegeneral.org/medical-services/cancer-care/lung-cancer.

Additionally, mohs Micrographic surgeon Dan Filitis, MD, was filmed for a yet-to-be-released video about the surgery. Mohs surgery is the most advanced, precise, and effective treatment for skin cancer. It has the highest cure rates and preserves healthy tissue. We are committed to the highest standard of care. Look for Dr. Filitis’ piece to be available soon, which will be accessed on the MaineGeneral website at www.mainegeneral.org/medical-services/skin-care/mohs-surgery.

Further Expansion of the Role of the Navigator

In 2019, the HACCC introduced the role of the Genitourinary (GU) Point-of-Entry Navigator (POEN) through the application of grant funds, enabling our cancer center to expand critical early navigation. Thanks to the valuable addition of the GU navigator, we now offer services from a team of four POENs to patients diagnosed with GU, GI, Lung and Head & Neck cancers. These highly skilled nurse navigators have been instrumental in elevating our patient navigation at the point of entry to achieve a new level of excellence in patient care.

In collaboration with the MHCCN, our POEN team has focused on establishing competencies associated with this role, including pursuing national certifications in oncology nursing and navigation. As active participants in a network with 10 other cancer programs, they have broadened their relationships, thus allowing coordination of patient care across the various sites. Throughout our mission to address appropriate services and barriers to care, the goal is to always empower the patient to receive care close to home.

Over the course of implementing and expanding our early navigation services, POENs and the other members of the HACCC clinical and support teams, have found that earlier interaction with a newly diagnosed cancer patient provides a greater opportunity to assess barriers to care and make appropriate referrals.

The HACCC is leveraging navigators in new and innovative ways to meet the needs of our patients. For example, the pie chart on the next page represents the volume of patients diagnosed with a GI, GU, Lung or Head & Neck cancers who started services with the POENs (791) in 2019. With a comprehensive program in place, the HACCC’s program counseled 100 percent of these patients for tobacco cessation, reviewed eligibility for clinical trials, and screened for distress indicators. Distress indicators may include barriers such as financial and transportation needs, factors that when addressed appropriately can impact a patient’s experience and improve outcomes.
The graph below displays the collaborative efforts of the network with the goal to enable patients to remain close to home for appropriate care. The graph shows the improvements of efforts made with sustainable increases on an annual basis. Our POENs have played an important role in these achievements.

As part of their consistent strive for excellence, the POEN team pursued a unique opportunity to be part of national research study, called NavMetrics. After completing a rigorous application, they were one of only eight cancer programs nationwide selected to participate in the study. Other members of the HACCC team joined efforts with the POENs, tracking key metrics to determine the benefits of a navigator and to identify gaps and opportunities. This was a wonderful opportunity for our POEN team, along with other clinical and support staff, to establish relationships and networking with other cancer programs across the country.

Partnerships with the Academy of Oncology Nurse and Patient Navigators (AONN+) also have opened doors for our staff to speak at national conferences and to be the recipient of having a national speaker, Lillie Shockney at last year’s local Oncology Nursing Chapter symposium.

Please refer to the following link to learn more about the studies. Results will be available at a later date. (www.aonnonline.org/education/standardized-metrics/navigation-metrics-quality-study)

We are proud to announce that an additional POEN was added to the team in August 2019, Heather Stevens. Heather comes with 15 years of oncology nursing experience and has assumed the role of our new HACCC POEN for Breast and GYN cancer patients. She is completing her orientation to this new role, working with both services to establish work flow, increasing her knowledge base of these specific oncology populations and learning the National Comprehensive Care Network (NCCN) regulations and guidelines of these cancer types. As she arms herself with the above, she will become an integral part of the POEN team, thus complementing and strengthening this level of service for those beginning their cancer journey.

What started in 2015 as a directive from our accredited cancer program (Commission on Cancer) to put navigation services into place has now laid the foundation to meet the ever-changing needs of our cancer patients and their families. As the health care system has become more complex and barriers to care have become more challenging to overcome, the HACCC POENs and the extended team have remained true to the mission at hand: to develop a high-quality model of navigation to care for all patients diagnosed with cancer and their families throughout the continuum of care.
Dedication, compassion and state-of-the-art care are what our superior workforce contributes to the patient experience at the Harold Alfond Center for Cancer Care (HACCC). Our radiation and medical oncology teams include board-certified oncologists who determine the appropriate treatment plan, unique for each patient. Our amazing advanced practice providers partner with our oncologists to support and assist in executing the plan of care.

Meet Our Oncology Provider Team

Radiation Oncology

Glenn A. Healey, MD

Medical Oncology

Ginna E. Dix, AGNP
Jessica L. Douin, NP
Sandra Gilbert-Lord, PA-C
Ridhi Gupta, MD
Lindsey Hathaway, MD
Byung Kim, MD
Rachit Kumar MD, MBBS
Amanda M. McGarr, FNP
G. Richard Polkinghorn, MD
Sneha Purvey, MD
Jillian Savage, NP
Elizabeth Teague, PA-C
Susan Trafton, PA-C
Community Outreach

Preventing Cancer in Our Communities

The easiest cancer to treat is the one that never happens. While the HACCC strives to meet the needs of patients who have been diagnosed with cancer, the Cancer Committee and staff at the cancer center also work to provide cancer prevention information to community members, whether they are receiving services at the cancer center or not.

In 2019, the cancer center collaborated with Prevention & Healthy Living to offer a free community event, Food as Medicine: Preventing Cancer with Food. Held on Oct. 23 at the Alfond Center for Health's Teaching Kitchen in Augusta, the event had 50 attendees.

Research shows that a plant-based diet can help people achieve a healthy weight and reduce their risk of obesity-related cancers such as bladder, esophageal, prostate, breast, pancreatic, endometrial, kidney and more. Participants learned how to incorporate cancer-fighting fruits, vegetables, and whole grains into their diet to prevent cancer.

Donna Walsh, the center’s oncology-certified registered dietitian, presented information on how food choices can lower cancer risk. Following Donna’s talk, Chef Ben Ramsdell prepared delicious cancer-fighting foods that participants sampled. Participants left with low-cost recipes they can make at home.

For the event, participants completed an evaluation. 100 percent of those who completed evaluations said they would likely implement what they learned. Some participants’ comments: “Very helpful. Will change diet, exercise, and tell others what I have learned.” “I'm going to try and make roasted vegetables. I've never made them.” “I learned a lot tonight.”

The Cancer Committee selected this program for 2019 after reviewing the Community Needs Assessment in Central Maine, including the highest prevalence cancers in MaineGeneral’s Cancer Registry and the top cancers selected in late stages.

The assessment showed that more than 60 percent of obesity-related cancers, especially esophageal, ovarian and pancreatic, are detected at late stages (III and IV).

The event followed the guidelines from the American Institute for Cancer Research.

“I’m really happy to have the opportunity to share this life-saving information with a wide representation of members from our community,” Donna said. “Too often, we work in silos from one another. It’s wonderful to come together to help people make small realistic changes that can so drastically improve their health and lives.”
Promoting Early Detection Through Screening

The HACCC promoted several screening programs in 2019 to detect cancer earlier when treatment is more beneficial for patients.

Lung Cancer

Lung cancer is the leading cause of cancer death for men and women in the country, in Maine, and in our service area. Lung cancer is the most commonly occurring cancer in our system and the number-one cancer detected in late stages. Fortunately, low-dose CT scans (LDCT) are a new technology that can catch lung cancer sooner than traditional X-rays. Working in collaboration with Radiology, Prevention & Healthy Living, Pulmonary, and Thoracic Surgery, MaineGeneral has developed a robust screening program.

In 2019, the Cancer Committee partnered with Prevention & Healthy Living to reach out to patients overdue for their annual LDCT. As with mammograms, patients should receive an annual lung cancer screen following their baseline screen.

Mark Bourassa, a community health worker working for Prevention & Healthy Living, reached out to patients who were overdue for their scan, talked to them about barriers and facilitated scheduling the scan with the patient’s primary care office. From July 1, 2019 to Sept. 30, 2019, the CHW reached 396 patients. Of this number, 86 scheduled their LDCT.

Mark also reached out to all patients scheduled for LDCTs (whether they were overdue or not) to see if they would meet with him following the scan to discuss tobacco cessation. Of the 242 people offered counseling, 51 percent accepted the opportunity. Of those who accepted the CHW meeting, 68 percent accepted a referral to the Maine Tobacco Helpline (MTHL). Of this number, 39 percent accepted services MTHL counseling/medication services.

Mark is a former smoker whose wife died of lung cancer. He realizes how difficult quitting can be — he continued smoking even after his wife was diagnosed with lung cancer — Mark has an ability to “meet patients where they are at” and encourage them to meet with him to discuss quitting for good.

“People know I’ve been in their shoes,” he said. “They feel like I’m not lecturing them or looking down at them. I think this makes a difference, and they are more willing to meet with me and accept a referral to the Maine Tobacco Helpline. I really enjoy helping people and making a difference in their lives.”

Skin Cancer

The Cancer Committee decided to hold a free community skin cancer event after reviewing the most prevalent cancers at MaineGeneral. Skin cancer is one of the most prevalent cancers and is also detected in late stages. Held on Sept. 14, as part of Cancer Survivors Day, 29 people received a free screening and education about skin cancer prevention.

Of the 29 participants, seven needed referrals for additional follow-up and biopsy. Following the screening event, HACCC navigators reached out to all people with suspicious findings by phone, email or regular mail to ensure they got an appointment for follow up.

The event was so successful, with all available appointment times full, that the Committee has agreed to hold another skin cancer screening in conjunction with a Cancer Prevention Fair scheduled for Spring 2020.
Cancer Survivors Day

Despite a forecast of showers, more than 1,100 guests attended HACCC’s annual Cancer Survivors Day on Sept. 14 to celebrate life. The theme, “Seasons of Hope,” reminded cancer survivors, family, friends and HACCC staff that, just like the four seasons we experience in Maine, we all experience seasons in our lives that can be full of happiness, comfort, rejuvenation or sadness, pain and feelings of isolation.

The day started with an opening ceremony and guests were inspired by four speakers who shared their unique stories of their journey with cancer with a focus on the season they were experiencing. With humor and raw emotions, our speakers’ personal stories often moved the audience to laughter and tears.

The important message of all the speakers was that seasons do pass, and with the help of caregivers, friends and the resources available at the HACCC and in the community, healing can take place and our spirits can be restored. The opening ceremony closed with the singing of Carole King’s “You’ve Got a Friend” by local youth from Stage Presence for Dancers and the King’s Kids theater group.

Empowered with this message of hope, the crowd then participated in a variety of activities planned to address the needs of cancer survivors and their guests of all ages. These activities included a delicious sampling of healthy foods and more than 40 booths that provided information and education on managing symptoms, wellness, cancer prevention and screening, support groups, and many other community resources. Integrative therapists offered massages and Reiki and two dermatologists from MDFMR Dermatology Services offered free skin cancer screenings to 29 people.

Although the HACCC does not treat children, a diagnosis of cancer in a child affects family, friends and the community at large. Although Karsyn was treated for her cancer in Portland, her cancer journey had a huge impact on her family and the central Maine community at large. Helping families of all cancer patients feel supported through each season is a strong focus of our cancer program at HACCC and a highlight of this year’s cancer survivor day. Our goal is to continue to raise the bar of excellence in providing outstanding care and support to provide cancer survivors in our community with the tools they need to live life to the fullest.
Advanced Technology Closest to Home

Radiation Oncology 2019

Rad Onc Re-Accreditation by ACR
Our Radiation Oncology Practice was re-accredited by The American College of Radiology (ACR) in April 2019! The ACR Radiation Oncology Accreditation process has been widely considered as one of the most rigorous accreditation programs in the specialty of Radiation Oncology. In its description, it says, "(it is an) impartial peer review and evaluation of patient care. Facility staff, equipment, treatment-planning and treatment records as well as patient-safety policies and quality control/quality assessment activities are assessed."

We are proud of this achievement. We also renewed our commitment to continue improving the safety and effectiveness of care for all patients.

The Efficacy of Lung SABR
Lung cancer is one of the most common types of cancer. It accounts for about 28 percent of all cancer deaths. Non-small-cell lung cancer is the most prevalent form of lung cancer. Inoperable early-stage non-small-cell lung cancer had few treatment options in the past. Conventional radiation therapy for this type of cancer showed only about a 50 percent local control rate at three years post treatment. In recent years, a new radiation therapy technique called Stereotactic Ablative Radiotherapy (SABR) has been developed and implemented. The SABR technique delivers a significantly higher radiation dose per fraction, with a short course of one to five treatments. SABR has so far shown a much better three year local control rate of approximately 88 percent. Since SABR/SBRT uses a significantly higher dose per treatment, very accurate and precise positioning of each patient is required. Recent advancements in imaging technology and 4D motion management technology have allowed placement of tighter margins around treatment targets, thus making this technique possible. Lung SABR is only applicable for relatively small targets to protect surrounding normal tissues because of the higher per-treatment dose.

Advantages of Flattening Filter-Free (FFF) Beams
Modern medical linear accelerators (LINACs) can produce different kinds of radiation beams depending on the technical goal of each radiation treatment. Our LINACs are equipped with several different photon and electron beam energies.

The photon beams typically use a beam modifier known as a flattening filter in the beam line of the LINAC to produce a flat dose profile. Newer LINACs like those at the HACCC have the option of not inserting a flattening filter in the beam path. These beams are designated "Flattening Filter-Free" (FFF) photon beams. The advantages of FFF beams are as follows;

- A much higher maximum dose rate (up to 2,400 MU/minute for 10 MV FFF and 1,400 MU/minute for 6 MV FFF, compared with 600 MU/minute for either beam energy with a flattening filter placed in the beam path)
- Lower head scatter radiation (important for radiation safety considerations)
- Decreased dose outside the treatment field (important for dosimetric/treatment planning considerations)
As the name suggests, the dose profiles of FFF beams are not flat. This effect is more pronounced for beams with large treatment field sizes; however FFF beams are particularly useful for treatment of small-sized targets, which typically employ smaller field sizes.

Techniques like lung SABR and brain Stereotactic Radiosurgery (SRS) are ideally suited to the application of FFF beams because the target is small and the dose per treatment is high. Since FFF beams significantly reduce beam-on time during radiation treatment (because of the much higher maximum dose rates), this leads to improved patient comfort and decreased chance of patient motion during radiation treatment.

The Harold Alfond Center for Cancer Care (HACCC) was the first center in Maine to use FFF photon beams for radiation therapy treatment. These beams have been used since early 2018 for various radiation treatment methods, including but not limited to lung SABR.

6 MV FFF Addition Approved for LINAC 2

Because of our clinical experience with FFF beams, the optimal FFF photon beam energy to use for most lung SABR cases has become evident: The 6 MV FFF beam often showed obvious advantages in dose gradient (rate of dose decrease per unit distance in tissue) for the lung SABR technique when compared with the 10 MV FFF beam.

Since a 6 MV FFF beam is currently only available on one of the two LINACs in our facility, this has resulted in some scheduling restrictions. Fortunately, the budget for adding a 6 MV FFF beam to the other linear accelerator was approved in 2019. This additional feature will be scheduled for installation and commissioning in early 2020. We are excited to have this expanded capability and flexibility so we can schedule more lung SABR treatments.

Replacement of GE CT Simulator, with Upgrade to Device-less 4D CT Capability

CT simulators are an essential part of modern Radiation Oncology departments. The radiation treatment planning process starts with acquiring a CT image set of relevant patient anatomy and body contours. Our 10+-year-old CT simulator was replaced in April 2019 with a new model.

The newer model has additional useful functionalities. Highlighting one of many of these upgraded features, the Smart Device-less 4D imaging capability of the new GE Discovery RT CT simulator is very useful. Since patients need to continue breathing during simulation and treatment, organ motion near the diaphragm while obtaining a CT image set is unavoidable. Lung tumors move with patient respiration. To treat such moving targets with external beam radiation, information about the magnitude and direction of target motion is required. The replaced CT simulator used an external device attached to the CT to render a 4D CT image set. However, the new CT simulator does not require any such external device to produce 4D CT scans.

“Rather than tracking external changes on the body due to breathing, Device-less 4D uses internal anatomical metrics directly from the image data to determine the breathing signal. This gives clinicians a clear picture of how internal anatomy is moving, to precisely target tumors while sparing healthy tissue.”

Source: GE Medical.

Since it is a part of an integrated system, Device-less 4D CT capability has been working flawlessly and is saving time both for patients and staff.

To summarize, the Radiation Oncology staff are excited to have these new technologies and we will implement them carefully to maximize the safety and benefit of radiation treatments for all patients.

Community Health Worker Mark Bourassa and Radiology Technician Brandon Colby prepare for a patient
PET Advantage
The installation of the new PET Scanner brought state-of-the-art cancer imaging technology to MaineGeneral. Every aspect of the PET exam was improved by this investment. The new technology provides better image quality and sensitivity. This allows for more accurate results and the ability to detect smaller tumors which leads to earlier treatment and better outcomes.

The changes with the new scanner also provide a better experience for the patient. We can use less radiation for the exams and they can be performed in a shorter amount of time so they are much more comfortable for patients. It also allows us to increase our patient capacity so patients will wait less between seeing their oncologist and having the PET exam.

MaineGeneral continues to expand the oncology imaging services it provides so patients can receive quality care and diagnostics close to home. In the PET department we offer the latest in neuroendocrine tumor imaging. These exams can be done in a single appointment, rather than over several days, and offer more sensitive and accurate results as compared to traditional modalities. We also offer the latest in imaging for detection of prostate cancer recurrence, as well as radiotherapy for bone metastasis.

Growth/Expansion of Space
Meeting the Demand
As the patient volume increases and with the addition of oncology providers in Medical Oncology at the Harold Alfond Center for Cancer Care (HACCC), the need for additional exam space was recognized. To see more patients and maintain our excellent efficiency, we knew that exam room space was “prime real estate.”

In August 2019, the HACCC was privileged to bring two new oncology providers into our expanding practice. We recognized the need to expand our exam room space to accommodate our new provider practices. The lack of sufficient exam room space would lead to disruption in patient flow in the clinic, potentially decreasing patient experience. Without adding additional physical resources, patients may have faced longer wait times and clinic inefficiencies. Our desire was to eliminate excess wait times by effectively using our resources.

We added three exam rooms to our practice in 2019. Many people were relocated and spaces repurposed; however, with a great deal of planning, thought and creative solutions, outcomes were all positive. The addition of these exam rooms allows for physicians to each work out of three exam rooms on a typical clinic day.

When designing the exam room space, several factors were taken into consideration. We tried to create a warm, welcoming atmosphere with warm colors and lighting. Technology was incorporated into the rooms by having the computers on swivel wall mounts. This arrangement can allow the caregiver to face the patient and be involved in shared decision making; hence, greater patient engagement. This new physical change in environment can have a positive impact on both the patient and the staff experience.
Multiple variables and resources throughout the day may affect exam room efficiency and utilization. Our exam rooms were also designed with a mixed-use approach; for example, multiple types of visits can be performed in each exam room which allows for more flexibility. Having well-planned exam space and schedules can help provide adequate flexibility to account for the frequent deviations in rooming schedules. Our world of health care is constantly changing; therefore, it is important that we continue to promote adaptable, efficient and flexible work environments.

Efficient use of time and patient flow are indicators of efficiency and quality care. Adding our new exam rooms has helped improve our patient flow, decrease patient wait times, accommodate increased patient volumes, and support our growing oncology practice in Medical Oncology at the HACCC.
Open Access Clinic – Meeting the Patient Needs

Almost a decade has passed since the staff at the Harold Alfond Center for Cancer Care (HACCC) recognized the need to address the unexpected and urgent needs of patients undergoing cancer care in a more structured approach. Historically, the response to these emergent situations resulted in a trip to the Emergency Department where care was potentially not aligned with the patient’s treatment plan, often leading to unnecessary services or even a hospital admission. For these reasons and more, the HACCC introduced the Open Access Clinic (OAC) in 2010. The OAC is a model of care targeted to address the unscheduled patient needs in a prompt and appropriate manner by their cancer care team.

Through the years, the OAC has served thousands of patients who have expressed their gratitude for the timely, compassionate care received from their oncology team when urgent or concerning needs arose, such as increased pain, nausea or fever. Having a plan in place and a number to call, even if only to seek guidance, has proven to be a great patient and family satisfier and has enhanced desired outcomes.

However, as oncology treatments have increased in complexity and diversity, the complications and side effects that have warranted more urgent care and symptom management have also grown. Initiatives over the years for the staff to take a more proactive approach in identifying the high-risk patients and to have designated staff and OAC chairs within the medical oncology infusion suite resulted in daily challenges.

Staff often found themselves challenged with how to integrate the unexpected OAC patient needs with those scheduled for their planned treatment. This resulted in a daily review of how to manage staffing, as well as coveted chair time. Although the staff remained committed to addressing all of the OAC requests, it became evident that the OAC clinic warranted its own designated resources, including staff and space, to ensure this service could be executed daily without interruption.

In 2019, administration encouraged bringing these concerns to the Cancer Committee for review and recommendations. This resulted in a simple goal – to develop a comprehensive open access clinic by the end of the calendar year. The OAC descriptor of “comprehensive” allowed the team to be creative in their thinking and approach. To achieve the action steps within the calendar year, a plan was established to focus on, but not be limited to, those patients known to be of higher risk. A focus for the patients diagnosed with head and neck cancer and receiving radiation treatment would have the OAC resources integrated as part of their personalized plan of care. Another high-risk group that was identified included the soon-to-be discharged oncology patient from the inpatient to outpatient setting.

Led by a designated advance practice provider and a small task force, the elements of this goal were determined and executed throughout the year. After a specific plan was presented and clear patient needs were communicated, administration approved the renovations and additional resources for the OAC to be moved to a designated space on the 2nd floor of the HACCC. This OAC opened in January 2020 incorporating the focused elements of the goal, designated OAC staff and resources that include an additional three chairs from what the previous OAC had allotted.

Armed with specialized staff, a designated space and six chairs ready to respond to urgent and unscheduled needs, the new and improved comprehensive OAC can provide uninterrupted services, a great start to a new year and gift to our community.

Ginna Dix, NP, and Suzanne Rodrigue, RN
<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Total (%)</th>
<th>M</th>
<th>F</th>
<th>Analy</th>
<th>NA</th>
<th>Alive</th>
<th>Exp</th>
<th>Stg 0</th>
<th>Stg I</th>
<th>Stg II</th>
<th>Stg III</th>
<th>Stg IV</th>
<th>88</th>
<th>Unk</th>
<th>Blank/ Oth</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORAL CAVITY & PHARYNX</td>
<td>35 (2.9%)</td>
<td>30</td>
<td>5</td>
<td>34</td>
<td>1</td>
<td>31</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lip</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tongue</td>
<td>13 (1.1%)</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Salivary Glands</td>
<td>2 (0.2%)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor of Mouth</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gum & Other Mouth</td>
<td>5 (0.4%)</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>3 (0.2%)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tonsil</td>
<td>8 (0.7%)</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Oral Cavity & Pharynx</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIGESTIVE SYSTEM</td>
<td>188 (15.3%)</td>
<td>93</td>
<td>95</td>
<td>158</td>
<td>30</td>
<td>126</td>
<td>62</td>
<td>4</td>
<td>29</td>
<td>20</td>
<td>34</td>
<td>50</td>
<td>12</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Esophagus</td>
<td>17 (1.4%)</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stomach</td>
<td>18 (1.5%)</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>1</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>7 (0.6%)</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colon Excluding Rectum</td>
<td>50 (4.1%)</td>
<td>17</td>
<td>33</td>
<td>47</td>
<td>3</td>
<td>38</td>
<td>12</td>
<td>3</td>
<td>13</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cecum</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Appendix</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ascending Colon</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic Flexure</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transverse Colon</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Descending Colon</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sigmoid Colon</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Large Intestine, NOS</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectum & Rectosigmoid</td>
<td>28 (2.3%)</td>
<td>19</td>
<td>9</td>
<td>22</td>
<td>6</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectosigmoid Junction</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectum</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>18</td>
<td>6</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anus, Anal Canal & Anorectum</td>
<td>8 (0.7%)</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liver & Intrahepatic Bile Duct</td>
<td>19 (1.5%)</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liver</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intrahepatic Bile Duct</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>2 (0.2%)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other Biliary</td>
<td>3 (0.2%)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pancreas</td>
<td>34 (2.8%)</td>
<td>16</td>
<td>18</td>
<td>25</td>
<td>9</td>
<td>12</td>
<td>22</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retroperitoneum</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Digestive Organs</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY SYSTEM</td>
<td>274 (22.3%)</td>
<td>126</td>
<td>148</td>
<td>246</td>
<td>28</td>
<td>169</td>
<td>105</td>
<td>1</td>
<td>58</td>
<td>25</td>
<td>40</td>
<td>90</td>
<td>9</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Nose, Nasal Cavity & Middle Ear</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Larynx</td>
<td>16 (1.3%)</td>
<td>11</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lung & Bronchus</td>
<td>256 (20.9%)</td>
<td>115</td>
<td>141</td>
<td>229</td>
<td>27</td>
<td>154</td>
<td>102</td>
<td>0</td>
<td>54</td>
<td>22</td>
<td>40</td>
<td>82</td>
<td>8</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Trachea, Mediastinum & Other Respiratory Organs</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BONES & JONLTS</td>
<td>2 (0.2%)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bones & Joints</td>
<td>2 (0.2%)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SOFT TISSUE</td>
<td>13 (0.8%)</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soft Tissue (including Heart)</td>
<td>11 (0.9%)</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SKIN EXCLUDING BASAL & SQUAMOUS</td>
<td>70 (5.7%)</td>
<td>40</td>
<td>30</td>
<td>62</td>
<td>8</td>
<td>69</td>
<td>1</td>
<td>19</td>
<td>30</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Melanoma – Skin</td>
<td>61 (5.0%)</td>
<td>33</td>
<td>28</td>
<td>57</td>
<td>4</td>
<td>60</td>
<td>1</td>
<td>19</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primary Site</td>
<td>M</td>
<td>F</td>
<td>Analy</td>
<td>NA</td>
<td>Alive</td>
<td>Exp</td>
<td>Stg 0</td>
<td>Stg I</td>
<td>Stg II</td>
<td>Stg III</td>
<td>Stg IV</td>
<td>88</td>
<td>Unk</td>
<td>Blank/Oth</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>-----</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Other Non-Epithelial Skin</td>
<td>9 (0.7%)</td>
<td></td>
</tr>
<tr>
<td>Basal/Squamous cell carcinomas of Skin</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREAST</td>
<td>169 (13.8%)</td>
<td>0</td>
<td>169</td>
<td>153</td>
<td>16</td>
<td>161</td>
<td>8</td>
<td>12</td>
<td>86</td>
<td>16</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>FEMALE GENITAL SYSTEM</td>
<td>53 (4.3%)</td>
<td>0</td>
<td>53</td>
<td>42</td>
<td>11</td>
<td>45</td>
<td>8</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cervix Uteri</td>
<td>7 (0.6%)</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Corpus & Uterus, NOS</td>
<td>29 (2.4%)</td>
<td>0</td>
<td>29</td>
<td>25</td>
<td>4</td>
<td>27</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td>8 (0.7%)</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vagina</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vulva</td>
<td>5 (0.4%)</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MALE GENITAL SYSTEM</td>
<td>143 (11.7%)</td>
<td>143</td>
<td>0</td>
<td>122</td>
<td>21</td>
<td>141</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>52</td>
<td>30</td>
<td>21</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>137 (11.2%)</td>
<td>137</td>
<td>0</td>
<td>116</td>
<td>21</td>
<td>136</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>52</td>
<td>29</td>
<td>21</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>6 (0.5%)</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>URINARY SYSTEM</td>
<td>91 (7.4%)</td>
<td>67</td>
<td>24</td>
<td>81</td>
<td>10</td>
<td>80</td>
<td>11</td>
<td>0</td>
<td>25</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Urinary Bladder</td>
<td>52 (4.2%)</td>
<td>40</td>
<td>12</td>
<td>50</td>
<td>2</td>
<td>49</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Kidney & Renal Pelvis</td>
<td>35 (2.9%)</td>
<td>23</td>
<td>12</td>
<td>27</td>
<td>8</td>
<td>27</td>
<td>8</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ureter</td>
<td>1 (0.1%)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ENDOCRINE SYSTEM</td>
<td>11 (0.9%)</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>9 (0.7%)</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LYMPHOMA</td>
<td>54 (4.4%)</td>
<td>28</td>
<td>26</td>
<td>51</td>
<td>3</td>
<td>44</td>
<td>10</td>
<td>0</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hodgkin Lymphoma</td>
<td>6 (0.5%)</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hodgkin - Nodal</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hodgkin - Extranodal</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Non-Hodgkin Lymphoma</td>
<td>48 (3.9%)</td>
<td>23</td>
<td>25</td>
<td>45</td>
<td>3</td>
<td>39</td>
<td>9</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NHL - Nodal</td>
<td>31</td>
<td>15</td>
<td>16</td>
<td>29</td>
<td>2</td>
<td>23</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NHL - Extranodal</td>
<td>17</td>
<td>8</td>
<td>9</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MYELOMA</td>
<td>15 (1.2%)</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Myeloma</td>
<td>15 (1.2%)</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LEUKEMIA</td>
<td>15 (1.2%)</td>
<td>11</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lymphocytic Leukemia</td>
<td>4 (0.3%)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Myeloid & Monocytic Leukemia</td>
<td>11 (0.9%)</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acute Myeloid Leukemia</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chronic Myeloid Leukemia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other Myeloid/Monocytic Leukemia</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MESOTHELIOMA</td>
<td>8 (0.7%)</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>8 (0.7%)</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td>65 (5.3%)</td>
<td>32</td>
<td>33</td>
<td>31</td>
<td>34</td>
<td>48</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>65 (5.3%)</td>
<td>32</td>
<td>33</td>
<td>31</td>
<td>34</td>
<td>48</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,227</td>
<td>614</td>
<td>613</td>
<td>1,048</td>
<td>179</td>
<td>969</td>
<td>258</td>
<td>36</td>
<td>291</td>
<td>135</td>
<td>162</td>
<td>210</td>
<td>114</td>
<td>45</td>
<td>55</td>
</tr>
</tbody>
</table>

Exclusions: Not Male and Not Female